您的位置:首页 >文化 >

勾股定理证明方法汇总「勾股逆定理的证明方法」

时间:2022-12-24 09:49:30 来源:数学晨晖老师

大家好,勾股定理证明方法汇总「勾股逆定理的证明方法」很多人还不知道,现在让我们一起来看看吧!

勾股定理是一个基本的几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。

“勾三,股四,弦五”是勾股定理的一个最著名的例子。当整数a,b,c满足a?2; b?2;=c?2;这个条件时,(a,b,c)叫做勾股数组。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a?2; b?2;=c?2;。在中国数学史中同样源远流长,是中算的重中之重。《周髀算经》中已有“勾三股四弦五”的记述,赵爽的《周髀算经》中将勾股定理表述为“勾股各自乘,并之,为弦实。开方除之,即弦。”

勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。下面我们一起来欣赏其中一些证明方法:

方法一:赵爽“弦图”

三国时期吴国数学家赵爽在为《周髀算经》作注解时,创制了一幅“勾股圆方图”,也称为“弦图”,这是我国对勾股定理最早的证明。

2002年世界数学家大会在北京召开,这届大会会标的中央图案正是经过艺术处理的“弦图”,标志着中国古代数学成就。

方法二:刘徽“青朱出入图”

约公元263年,三国时代魏国的数学家刘徽为古籍《九章算术》作注释时,用“出入相补法”证明了勾股定理。

方法三:欧几里得“公理化证明”

希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》给出一个公理化的证明。

1955年希腊为了纪念二千五百年前古希腊在勾股定理上的贡献,发行了一张邮票,图案是由三个棋盘排列而成。

方法四:毕达哥拉斯“拼图”

毕达哥拉斯(公元前572—前497年),古希腊著名的哲学家、数学家、天文学家.

图1

图2

将4个全等的直角三角形拼成边长为(a+b)的正方形ABCD,使中间留下边长c的一个正方形洞.画出正方形ABCD.移动三角形至图2所示的位置中,于是留下了边长分别为a与b的两个正方形洞.则图1和图2中的白色部分面积必定相等,所以c的平方=a的平方 b的平方

方法五:达·芬奇的证明

达·芬奇,意大利人,欧洲文艺复兴时期的著名画家。主要作品《自画像》《岩间圣母》《蒙娜丽莎》等

图1

图2

方法六:五巧板“拼图”

利用两幅五巧板,拼成一个以c为边长的正方形和两个边长分别为a、b的正方形

方法七:在印度、阿拉伯和欧洲出现的拼图证明

做法是将一条垂直线和一条水平线,将较大直角边的正方形分成4分。之后依照图中的颜色,将两个直角边的正方形填入斜边正方形之中,便可完成定理的证明。

方法八:加菲尔德“总统证明法”

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。

----------

想在考试中出类拔萃、脱颖而出吗?

请关注微信公众号:ch_xuexiao


郑重声明:文章仅代表原作者观点,不代表本站立场;如有侵权、违规,可直接反馈本站,我们将会作修改或删除处理。