您的位置:首页 >艺术家 >

不可能图形的画「不可能存在的图形」

时间:2022-11-22 09:49:10 来源:人民邮电出版社

大家好,不可能图形的画「不可能存在的图形」很多人还不知道,现在让我们一起来看看吧!

人们往往从悖论中获得思维的乐趣,而几何学的悖论就是不可能图形。如今我们已创造出数千种这样的二维图像,不断挑战我们的眼睛和思维。三角形、披萨饼、七巧板也蕴藏着无穷的变化和巧妙的发现。

不可能!你确信吗?

人们从透视错觉得来灵感,创造了神秘的“不可能图形”。人类的视觉系统让我们觉得这样的图形很奇怪。然而这些图形确实是可行的,并为我们带来双重乐趣——先是惊奇,然后理解。

亚历山大·马赛,1829 年生于法国坎佩尔。他在 1872 年发明了四眼纽扣的系衣服方法。相比其前身两眼纽扣,这个极其简单的物件具备不会因旋转而滑动的优点。四眼纽扣曾让其天才发明者变得富有,如今仍以数千亿的数量出现在一半以上的服装上。你也一定拥有几件配有四眼纽扣的衣服。然而,四眼纽扣也许应当早 1000 年就出现,甚至在古代就该问世。想象一下颇为有趣:伟大的亚里士多德或许忽略了这枚纽扣的存在,而他的生活质量本可以因此改善。

自行车、四色定理、整数和一条直线上的点之间双射的不可能性、康威生命游戏、便利贴、不可能图形,都是近来一些颇为简单的创意。很难解释它们为何这么晚才闪现在人类的脑海中。这些发现让人不禁自问,我们今天是不是也对身旁的一些想法视而不见——而我们的后代也许会对我们的盲目难以理解。

罗特斯维尔德,别无他人!

不可能图形及其无穷的变化带我们从心理学迈入奇幻艺术与数学的世界,最终来到计算机图形学领域。最近的一些研究成果既展示了人们对不可能图形更深入的理解,也暴露出我们思维的欠缺。

仔细找找,我们会在古代绘画和版画中发现不可能物体的蛛丝马迹(参见“不可能图形的先驱”)。然而,我们并不确定作者是否刻意留下这样的踪迹,还是仅仅出于对透视法则的无知、粗心或者错用。在威廉·贺加斯的版画或马塞尔·杜尚的不可能床中,图画是刻意为之,但离纯粹的构思还相去甚远,并且没有一个早期不可能图画脱离了现实世界。画中错乱的现实世界,似乎是制造错觉不可或缺的源泉。

1.不可能图形的先驱。法王亨利二世收藏的一本早于公元 1025 年的《圣经》选读中有一幅圣母像 (a),画像中装饰柱的位置不合常理。我们可以认为这个错误不是有意而为,而是源于对透视的理解不足。在勃鲁盖尔 1568 年的画作《绞刑架下的舞蹈》(b) 中央有一具几何形状很奇怪的悬架——到底是艺术家有意在作品中安放这个奇怪的物体,还是在悬架透视效果上出了差错呢?威廉·贺加斯于 1754 年创作的版画 (c) 就是存心弄错的透视戏法。点烟斗的人在给他递火人的房子后面很远的山上。同样,羊群里最远的那头却画得最大!树也一样。马塞尔·杜尚在 1917 年根据一幅广告画画了一张不合常理的床 (d)。

瑞典人奥斯卡·罗特斯维尔德(1915—2002)是不可能图形无可争议的发明人。1934 年,年轻的奥斯卡在拉丁文课上百无聊赖。不知不觉间,他开始画出了像图 A 中那样摆放、位置不合常理的 9 个立方体。9 个立方体连起来,就有了图 B 中著名的“不可能三角形”。不可能图形就是这样诞生的。当他意识到自己画了什么后,奥斯卡·罗特斯维尔德将毕生都投入到研究透视悖论的问题中。

20 年之后,数学家罗杰·潘洛斯和他的父亲里昂内·潘洛斯重新发明的不可能三角形出现在《英国心理学期刊》(British Journal of Psychology)上的一篇科学文章中。今天,它被“不公正地”称为潘洛斯三角形,并有数不清的变化形式。

奥斯卡·罗特斯维尔德发明并且画了数百个不可能图形,为此,他的祖国瑞典在 1982 发行了一套印着其数百幅作品的邮票(见上图)以示纪念。莫里茨·科内利斯·埃舍尔用美妙的版画为这些令人困扰的几何物体带来巨大声誉,并首次将其置于复杂的图形创作中,彰显其魔幻般的美。

如今,其他艺术家继续着不可能图形和透视错觉的游戏,创造了引人思考的作品,个中玄妙力量可谓妙趣横生,令人啧啧称奇。其中最巧妙的艺术家包括我们认为堪称第一的桑德罗·德尔普雷特,以及冈萨尔维斯、尤斯·德梅、布拉多、莫莱蒂、恩斯特、福田繁雄、哈梅克斯、谢帕德、奥洛斯。

自 1934 年以来,悖论图形爱好者发明了各种令人难以置信的不可能物体,除此以外,数百篇针对不可能物体的文章也探讨了众多问题。这些让人称叹的小小图画引出了数不清的谜题,相关最新研究改变着人类对空间认知的理解,这至今仍是个挑战。

不可能图形的定义

乍一看,一幅不可能图形所展现的好像是人们习以为常的三维物体。但仔细端详,便能看出其中的不可能性:任何对整幅图形的逻辑解释似乎都无法成立。不可能图形为我们的视觉系统设下了陷阱。

陷阱通常是这样的:图形的每一部分立即被我们的大脑理解为一个三维物体,只有从一部分看到另一部分,试图从整体协调不同部分时,图形中自相矛盾的地方才会显现。不同的图形有不同的矛盾之处:

两个远近不同的平面,本不该相交却相交了;物体中的某一个平面,从不同角度观察,可以被认为是在上面或者在下面;图画中的某一个区域,结合图画中不同部分,可以看成是空的或者满的;两个平面相交的角,可以是“凹陷”或者“凸起”等。

同样令人惊讶的是,一切所谓的“不可能”图形都是可能的。为了证明这一点,我们提出一般性定理(参见“如何让它们变得可能?”),或者做出一些三维物体并对其拍照,以产生想要的图像。“一些不可能图形”中就有一系列例子。观察者认为来自图形本身的矛盾,其实源自思维所做出的简单假设,而这些假设又将思维带进了理解上的死胡同。

2. 如何让它们变得可能?

“可不可以让不合逻辑的图形变得可能?”有一个简单的答案:用铁丝做出结构,每条线段用一根铁丝!也有更好的方法,下面的定理指出对于很多轮廓图画(包括不可能图形),我们可以找出与之对应的多面体来呈现其图像。

定理:对任何由直线段组成并可分割成多边形集合的图形F,存在一系列多面体P1,…, Pn和方向D,使得多面体P1,…, Pn沿平行于D方向在与D垂直的平面上的投影为图形F。

换句话说,从无穷远的地方沿着D方向观察P1,…, Pn,可以看到图形F。该定理对潘洛斯三角形和大部分相关物体都适用。它也可以推广到包含曲线的图,或用来研究其他类型的透视法。

该定理的证明很简单。假设图形 F(a) 可以分解成互不重合(某些线段在分解时可重复出现两次)的多边形 A1,…, An 的拼接(b)。对分解的每一个多边形 Ai 生成一个多面体 Pi (c),使多面体两个形状为 Ai 的面垂直于 D 方向,并通过每一个顶点将两个面彼此相连(即:Pi 是底面为 Ai 的柱体)。从远处沿着 D 方向看(d),多面体 Pi 呈现图像 Ai 。对与 Ai 相对应的不同多面体取不同的高度(使其每一条边都不会在多面体合并时消失),就得到了要找的多面体集合(e)。但我们注意到,该定理对不可能图形 3g 和 3j 不适用,因为它们的轮廓图不能被分解成一系列多边形。

3. 一些不可能图形

在大多数情况下,这些假设,例如“物体的限定面一定是平的”或“在图画中看起来是直的,在空间中就一定是一条直线”,可以使人快速并正确地理解现实世界的图像。但在观察不可能图形时,这些假设会引起大脑对面积和体积相对布局的想象,反而使图画的各部分之间无法匹配。被蒙蔽的视觉系统难以摆脱自己设下的局部理解,种种疑惑就会令视觉系统得出看似矛盾的结论。于是,思维开始原地打转,徒劳地寻找着对图像的整体理解——合理的阐释虽然存在,却永远找不到。

《 玩不够的数学:算术与几何的妙趣》作者:让·保罗·德拉耶

本书揭开趣味游戏、艺术设计和日常生活中的数学密码,通过新颖话题和精美图示展现算术与几何中隐藏的妙趣,从最简单的数学原理走入算法的精彩世界,展现算法破解数学谜题的无穷威力。本书适合所有数学爱好者阅读。


郑重声明:文章仅代表原作者观点,不代表本站立场;如有侵权、违规,可直接反馈本站,我们将会作修改或删除处理。